

 ARL-TR-8274 ● JAN 2018

 US Army Research Laboratory

US Army Research Laboratory Visualization
Framework Architecture Document

by Chien Hsieh and Andrew Toth

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official

endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8274 ● JAN 2018

 US Army Research Laboratory

US Army Research Laboratory Visualization
Framework Architecture Document

by Chien Hsieh and Andrew Toth
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2018

2. REPORT TYPE

Technical Report

3. DATES COVERED (From - To)

1 January–30 September 2017

4. TITLE AND SUBTITLE

US Army Research Laboratory Visualization Framework Architecture

Document

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Chien Hsieh and Andrew Toth

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory

Computational and Information Sciences Directorate (ATTN: RDRL-CIN-T)

2800 Powder Mill Road

Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8274

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

Approved for public release; distribution is unlimited.

14. ABSTRACT

Visualization of network science experimentation results is generally achieved using stovepipe solutions tailored to specific

experiments and performance metrics. Based on ZeroMQ, the US Army Research Laboratory (ARL) Visualization

Framework presents a language-agnostic platform-independent approach to connecting data published by data sources to

visualizations using a publish/subscribe mechanism and ZeroMQ. The framework provides for automated discovery of data

sources by the visualization without prior knowledge of the data sources. This report documents the ARL Visualization

Framework system design and specific details of its implementation.

15. SUBJECT TERMS

visualization, experimentation, ZeroMQ, publish/subscribe, network science, NSRL, service discovery

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

26

19a. NAME OF RESPONSIBLE PERSON

Chien Hsieh

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-2365
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.

iii

Contents

List of Figures v

List of Tables v

1. Introduction 1

2. Analysis 1

2.1 Requirements 1

2.2 Use Cases 2

3. Architecture 2

3.1 ZeroMQ 3

3.2 Executive Controller 3

3.3 VFAdapter 4

3.4 Capability 4

4. Message Design 4

4.1 General Structure 4

4.2 Message Types 6

4.2.1 Discovery Message 6

4.2.2 Request Message 8

4.2.3 Data Message 9

5. Application Work Flows 10

5.1 Startup 10

5.2 Discovery 11

5.2.2 Outgoing 11

5.2.2 Incoming 11

5.3 Synchronous Request and Response of On-Demand Nonstreaming
Data 12

6. Conclusion and Roadmap 13

Approved for public release; distribution is unlimited.

iv

7. References 15

List of Symbols, Abbreviations, and Acronyms 16

Distribution List 17

Approved for public release; distribution is unlimited.

v

List of Figures

Fig. 1 ARLVF system architecture ... 3

Fig. 2 Synchronous request and response ... 13

List of Tables

Table 1 List of metadata fields and descriptions caption 5

Table 2 Discovery message payload fields .. 7

Table 3 Scenarios for using on_demand and streaming_data flags 8

Table 4 Request message fields ... 9

Approved for public release; distribution is unlimited.

vi

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

1

1. Introduction

Scientific visualizations are often developed to support a specific experiment or

series of experiments. These efforts, which can often balloon into full-blown

development projects, are often discarded as the research diminishes or when the

technology du jour reaches a tipping point. Reuse of an existing visualization often

requires researchers to write adapters to existing software codes or rewrite large

sections of code. This report describes a US Army Research Laboratory (ARL)

project to develop a generalized approach to developing data sources and

visualizations such that they may be combined in new ways and used by new

technologies as they are developed.

The ARL Visualization Framework (ARLVF) provides an infrastructure for a

variety of visualization and data-producing tools to collaborate in order to create a

platform to monitor experiments and visualize results for researchers. A principle

goal of the ARLVF is to provide a general and flexible approach to creating

applications and integrating tools into this visualization platform.

Since the ARLVF was initially designed and implemented in the fall of 2015

(version 0.1),1 changes have been introduced as part of the deployment of several

data visualization applications in the Network Science Research Laboratory.2

Those changes were necessary to adapt to the new requirements that emerged from

the initial use of the visualization applications. This report details the architecture

and design of the current version of ARLVF (version 0.2).

2. Analysis

The following sections discuss the important requirements and use cases that helped

drive the changes in the ARLVF.

2.1 Requirements

The general requirements from version 0.1 of ARLVF continue to apply. Those

requirements, which specified ease of use, language agnostic, operation system

agnostic, and flexible deployment environment, are still very relevant. The

following main requirements for version 0.2 address specific operational needs:

 Query options. Visualization applications should have a mechanism

through which to describe what and how the requested data are to be

procured. For example, it may want to receive only data that satisfies

certain filter criteria, or data are to be in JavaScript Object Notation

Approved for public release; distribution is unlimited.

2

(JSON) format and the like. There was no process in the previous

version to accomplish this function.

 Synchronous request response. In version 0.1, visualization applications

were needed to implement asynchronous callback functions to receive

requested data. It would be helpful for ARLVF to allow synchronous

responses in order to simplify the processing at the visualization

applications.

 Alternative data packaging. The original implementation of ARLVF

used the Google Protobuf library to serialize and deserialize data as they

are passed between ARLVF applications. There have been instances

where a different version of Protobuf was installed and used in the

environment where ARLVF was operating, and the version conflict

prevented the ARLVF from functioning correctly.

2.2 Use Cases

The following are possible use cases for using the ARLVF, in terms of the way data

are made available from the data producer:

 On demand. A visualization application requests and receives data from

a data producer on an as-needed basis. The produced data can be

received in a single data transmission (nonstreaming) or multiple

transmissions (streaming). Optional parameters can be embedded in

request messages.

 Broadcast. A visualization application requests to receive data that are

being broadcast by a data producer in an ongoing basis. These data are

being produced and published regardless of whether there is any active

consumer. Once the data subscription begins, the data will be streamed

to the visualization application until a request to stop is issued by the

visualization application.

 Directed. A data producer application streams data directed at a

visualization application. This use case differs from the previous two in

that the data are pushed from the data producer to the visualization

application.

3. Architecture

The ARLVF is a platform that consists of a collection of libraries, executables, and

utility modules (Fig. 1). The ARLVF as a whole serves as platform for the

Approved for public release; distribution is unlimited.

3

development and deployment of applications that easily provide and consume data

and will ultimately lead to effective visual presentation of the data.

Fig. 1 ARLVF system architecture

Figure 1 illustrates the ARLVF in the context of a distributed visualization system

of data sources and providers. The boxes in blue are the core infrastructure

components provided by the ARLVF source code bundle. The boxes in orange are

examples of applications that are developed by the user to work in the ARLVF

environment. These applications can communicate with other resources or

applications that can provide or visualize data. The following sections discuss the

main components and concepts of ARLVF.

3.1 ZeroMQ

Consistent with version 0.1, ZeroMQ serves as the central messaging backbone of

ARLVF. Specifically, it enables and maintains communication among ARLVF

applications. The ARLVF utilizes the model of Pub-Sub socket pattern with a

message broker.

3.2 Executive Controller

The Executive Controller is the application that monitors all applications

participating in the framework. Furthermore, it serves as the data broker of the

messages that traverse between the applications. It must be running and active for

the framework and all of the ARLVF applications to operate properly. The purpose

for making it a data broker is 2-fold. First, it serves as the central point of contact

Approved for public release; distribution is unlimited.

4

for all applications that produce and/or consume data in the system. Therefore, the

applications are not required to connect directly to any other peer applications to

send or receive data. Second, it provides a consolidated view of all the active

ARLVF applications in any given time. In runtime the Executive Controller binds

to 2 ZeroMQ sockets, one PUB and the other SUB.

3.3 VFAdapter

The VFAdapter is the main application programming interface (API) through

which ARLVF applications (created by application developers) are able to

communicate with each other. The VFAdapter is designed to be instantiated and

contained in the ARLVF application. It provides the following framework

functions for a given application module:

 It handles capabilities of the ARLVF application and sends and receives

discovery messages.

 It provides interface functions for the ARLVF application to send

messages. It will also invoke callback functions, to be defined by the

contained ARLVF application, to handle processing of received

messages.

3.4 Capability

Capability is a logical representation of a resource or facility that can provide or

consume data. For example, a data provider capability can be a file of comma-

separated values or a live stream of JSON data. Similarly, a data consumer

capability can be an application that writes data to a log or display data to a bar

chart. An ARLVF application may contain one or more capabilities, and the

capabilities can be discovered by other ARLVF applications.

4. Message Design

4.1 General Structure

All messages sent by an ARLVF application module are “multipart” messages.

Specifically, there are 3 parts: topic, metadata, and payload. ZeroMQ ensures that

all or none of the parts are delivered to the recipient as one single transaction.

Therefore, the multipart message structure is a convenient and effective way for

ARLVF to partition its messages while guaranteeing the transactional integrity of

each message.

Approved for public release; distribution is unlimited.

5

The topic is the first part of the message and is a string with a hierarchical naming

convention where each element in the name hierarchy is separated by a dot (“.”).

The topic string specifies the characteristics about the content of the payload. The

topic of a message allows ZeroMQ to apply filters when it determines whether to

deliver the message based on the subscription filter. The following are 2 example

topics:

 Discovery

 Request.96c239acc-cd52-52f9-229c-f4bae98bd628

The metadata are JSON data that describe the nature of the message. The following

is an example of a metadata segment:

 {

 "origin":"e9a2a3ea-bb28-11e6-96f7-d4bed98ac412",

 "msg_id":"09d298dc-ce50-25f9-47a2-e5cde07bd628",

 "correlation_id":"13a071ce-bb28-09c2-23b9-c6abd98cd920"

 "cap_uuid":"23b071bd-cc39-12d5-42c9-d7bd98ee819",

 "options":"user specified string",

 }

Table 1 lists the metadata fields and provides a description along with the source

of the field value.

Table 1 List of metadata fields and descriptions caption

Field Description Set/generated by

origin

UUID of the ARLVF application module. Same as
module_uuid of its own discovery message.
Randomly generated and set once during
application startup.

Framework

msg_id UUID of the message. Randomly generated. Framework

correlation_id

Correlation ID. Value is to be populated only if this
message is result of or related to an earlier message.
In which case, correlation_id should be the msg_id
of such earlier message. In other instances, it is
blank.

Application

cap_uuid
Capability UUID. Populated when in a data
message to be the cap_uuid of the data producer.
Otherwise, it is blank.

Application

options
Optional string data field for application to specify
parameters that accompany this data request.
Default is blank.

Application

Notes: UUID = universally unique identifier; ID = identifier.

The payload is serialized binary data representing the payload of the message. The

format and structure of payload is dependent on message type and applications.

Approved for public release; distribution is unlimited.

6

4.2 Message Types

The following sections discuss the message types that ARLVF supports.

4.2.1 Discovery Message

On a regular interval, each ARLVF application sends a discovery message to the

framework. This is essentially a keep-alive message to announce its continued

presence in the framework as well as to advertise capabilities that are contained

therein. The following are the expected values and formats of each of the sections

in a Discovery message.

 Topic: Discovery

 Metadata: All relevant fields will be populated automatically by the

VFAdapter. There are no application specific values in the metadata part

of a Discovery message.

 Payload: The payload is expected to be JSON data representing key

attributes of the application module and its capabilities. Payload is

generated by the enclosed VFAdapter based on information about the

application and capabilities that it is able to provide.

The following is an example payload of a Discovery message:
 {

 "module_uuid":"e9a2a3ea-bb28-11e6-96f7-d4bed98ac412",

 "module_name":"Experiment output from John",

 "module_details":"Conducted on 04-DEC-2016",

 "capabilities":

 [

 {

 "cap_uuid":"09d298dc-ce50-25f9-47a2-e5cde07bd628",

 "cap_name":"PCAP IP distribution at 207 subnet",

 "cap_type_id":"pcap.summary",

 "cap_category":"producer",

 "state":"normal",

 "streaming_data":false,

 "on_demand":true,

 "custom":"{ \"opt1\":\"date\", \"opt2\":\"type\" }"

 },

 {

 "cap_uuid":"12a345bc-ea67-89b0-12c3-d4eab56cd789",

 "cap_name":"DAVC host server d12 cpu usage",

 "cap_type_id":"timeseries.xy",

 "cap_category":"producer",

 "state":"normal",

 "streaming_data":true,

 "on_demand":false,

 "custom":""

 }

]

 }

Approved for public release; distribution is unlimited.

7

Table 2 lists discovery message payload fields, and provides a description along

with the source of the field value.

Table 2 Discovery message payload fields

Field Description Set/generated by

module_uuid
UUID of the application module. Randomly
generated.

Framework

module_name Human-readable name of this application module. Application

module_details
Optional string data field for additional
information about the module. Default is blank.

Application

capabilities
Array of capabilities offered by this application
module.

Framework

cap_uuid UUID of the capability. Randomly generated. Framework

cap_name Human-readable name of the capability. Application

cap_type_id
ID of the capability type, and has specific meaning
in this visualization environment.

Application

cap_category “producer” or “consumer” Application

state
For future: to indicate the state of the capability;
default to be “normal”. Other values can be
“error”.

Application

on_demand

For data producer. True if the capability will only
respond after a request is received; false if the
capability can generated or broadcast data
unprompted. If on_demand is false, the capability
is considered in broadcast mode and, therefore,
streaming_data are implicitly true. Default is true.

Application

streaming_data

For data producer. True if the capability consists of
streaming data. Only meaningful if on_demand is
true. streaming_data is assumed to be true if
on_demand is false. Default is false.

Application

custom
Optional string data field for additional
information about the capability. Default is blank.

Application

Note: UUID = universally unique identifier; ID = identifier.

4.2.1.1 How to Set on_demand and streaming_data Flags of a Capability

Table 3 describes the possible scenarios for using the different combinations of

on_demand and streaming_data flags.

Approved for public release; distribution is unlimited.

8

Table 3 Scenarios for using on_demand and streaming_data flags

on_demand streaming_data Description and use cases

True False
Capability providing static data, or one-time customized
data. For example, content of a csv file in a directory that
can drive the visualization of a bar graph.

True True

Capability that provides real-time data that are customized
to a particular data consumer. For example, the capability is
a system performance monitoring application, and a data
consumer requests only the real-time data of central
processing unit load, which is to be published to the data
consumer every 2 min.

False . . .

Capability that provides sporadic or real-time data that are
not customized to any particular data consumer and will be
published regardless if a data consumer is present. For
example, a capability that broadcasts image data every time
a camera takes a picture, or a capability that broadcasts the
number of logged in user every 30 s.

4.2.2 Request Message

A request message is sent from a data consumer application to a data producer

application to request for data. This is required in order to receive data when the

on_demand flag of the data producer capability is set to true. The request message

must state the capability and any appropriate options if necessary.

 Topic: Request: <module_UUID_of_data_producer>.

 Metadata: Origin and msg_id are generated by the framework.

correlation_id is not anticipated to be used by a request message.

 Payload: The payload of a request message is in JSON format. The

following is an example of payload of a request message.

 {

 "consumer_uuid":"f0b3b308-ba98-13f6-00f8-c2bf198de692",

 "producer_uuid":"e9a2a3ea-bb28-11e6-96f7-d4bed98ac412",

 "cap_uuid":"09d298dc-ce50-25f9-47a2-e5cde07bd628",

 "req_type":"start"

 }

Table 4 lists request message fields, and provides a description along with the

source of the field value.

Approved for public release; distribution is unlimited.

9

Table 4 Request message fields

Field Description Generated/set by

consumer_uuid UUID of the data consumer application module. Application

producer_uuid UUID of the data producer application module. Application

cap_uuid UUID of the request capability. Application

req_type
Valid values are “start” and “stop”. Only relevant if
both on_demand and streaming_data of the
capability are true, otherwise blank.

Application

Note: A data consumer is required to request to receive data from a capability whose on_demand flag is false.
In this case, the VFAdapter will simply subscribe to the appropriate broadcast message topic. See Data
Message Section 4.2.3.

4.2.3 Data Message

Data messages are constructed according to the type of use case that generated the

data.

4.2.3.1 On-Demand Data Message

An on-demand data message is sent by a data producer application module to carry

data that have been requested by a data consumer module. In this case the

on_demand flag of the data producing capability is true.

 Topic:

OnDemandData.<module_UUID_of_data_consumer>.<msg_id_of_re

quest_msg>

 Metadata: Origin and msg_id are generated by the framework.

o correlation_id: set by the data producer application based on the

msg_id of the request message that it had previously received.

correlation_id should be identical to the

msg_id_of_request_msg of the topic.

 Payload: Content of the data. The data are prepared by the data producer

application, and they can be string or binary data.

4.2.3.2 Broadcast Data Message

Additionally, a data producer module may use a data message to broadcast data

associated with a capability that does not require requests. The data are broadcast

regardless of whether an active consumer exists. The on_demand flag of the data

producing capability is false.

Approved for public release; distribution is unlimited.

10

 Topic:

BroadcastData.<module_UUID_of_data_producer>.<producer_cap_u

uid>

 Metadata: Origin and msg_id are generated by the framework.

correlation_id is not used.

 Payload: Content of the data. The data are prepared by the data producer

application, and they can be string or binary data.

4.2.3.3 Directed Data Message

A directed data message is pushed by a data producer application to a specific data

consumer application. In the case of directed data, the data producer controls the

flow, while the data consumer is a passive recipient of the data. This is in contrast

to on-demand data.

 Topic:

DirectedData.<module_UUID_of_data_consumer>.<consumer_cap_u

uid>

 Metadata: Origin and msg_id are generated by the framework.

 Payload: Content of the data. The data are prepared by the data producer

application, and they can be string or binary data.

5. Application Work Flows

The following are some of the work flows that are typical for ARLVF applications.

5.1 Startup

 Application initializes and then instantiates the VFAdapter and provides

to it information such as application module name and IP and port

numbers to connect to the Executive Controller.

 Data producer application registers its own Capabilities with the

VFAdapter.

 Data consumer application specifies compatible Capability filters with

the VFAdapter. The filter allows the data consumer to focus in on those

data producers and capabilities that are compatible with this data

consumer. If not specified, the data consumer application will see all

discovered applications and their registered capabilities.

Approved for public release; distribution is unlimited.

11

 The VFAdapter subscribes to the following message topics, which will

remain active throughout the lifetime of the application.

o Discovery

o Request.<module_UUID_of_application>

o OnDemandData.<module_UUID_application>

o DirectedData.<module_UUID_of_application>

5.2 Discovery

The Discovery mechanism is handled solely by the VFAdapter object contained in

the ARLVF application.

5.2.2 Outgoing

On a regular basis, the VFAdapter scans the registered Capabilities of the

application module. It then constructs and sends the Discovery message to the

Executive Controller, which in turn publishes to all application modules in the

ARLVF environment. This functionality executes automatically without the

intervention of the application module.

5.2.2 Incoming

As a result of the subscription to the Discovery topic, the VFAdapter will be

notified by ZeroMQ when a discovery message is received. Incoming discovery

messages are digested by the VFAdapter, which in turn constructs/updates the

internal data model representation of the peer application module and its

Capabilities. By implementing the appropriate callback functions, the enclosing

ARLVF application can be notified when a new application is discovered.

When the VFAdapter does not receive a discovery message from a peer application

after a certain amount of time, the internal representation of that application module

is removed from the list of discovered modules. The enclosing application can be

notified of such event by implementing the appropriate callback function to perform

additional handling.

Additionally, the enclosing application has access to the data model at any given

time during runtime.

Approved for public release; distribution is unlimited.

12

5.3 Synchronous Request and Response of On-Demand
Nonstreaming Data

The following describes the sequences of events that occur when a data consumer

requests for and receives data from a data producer.

1) The ARLVF data consumer application invokes the request_data

function. The message includes information about the data producer and the

capability that provides the desired data. Additional query options can be

included in the request message.

2) The VFAdapter publishes the request message. It also puts away the

message_id of the request message in an internal cache so it can be cross

referenced when the corresponding response data arrives. At this point, the

execution of the request_data function is blocked, awaiting response data.

There is a timeout associated with this block, which defaults to 30 s. The

timeout value is configurable as a parameter in the request_data function

call.

3) The Executive Controller receives the Request message and forwards it to

the appropriate ARLVF data producer application.

4) By virtue of the subscription to the

Request.<module_UUID_of_application> message topic, the

VFAdapter of the data producer application is notified by ZeroMQ about

the incoming request.

5) The VFAdapter invokes the callback handler function that the data producer

application has declared.

6) The data producer application looks up the requested capability and

associated options and prepares the data accordingly. It then invokes the

send data function of the VFAdapter to publish the on-demand data. The

correlation_id of the Data message must be correctly set.

7) The Data message reaches the Executive Controller, which immediately

publishes it to the appropriate data consumer.

8) Because it already subscribes to the

OnDemandData.<module_UUID_application> topic, the VFAdapter on

the data consumer application receives the Data message. It finds the correct

message_id and releases the lock on the execution of the request_data

function.

Approved for public release; distribution is unlimited.

13

9) At the data consumer application, the request_data function returns with

the Data message created by the data producer application.

Figure 2 illustrates the messaging and processing of the request.

Fig. 2 Synchronous request and response

6. Conclusion and Roadmap

The ARLVF provides a platform for reusable scientific visualizations to researchers

working in the ARL Network Science Research Laboratory, thereby reducing the

researcher’s workload. Visualizations already implemented in ARLVF range from

simple graphs, strip charts, and bar charts to complex network node mapping, node

interaction, and packet analysis. ARL developers created VFAdapters using

Python, Java, JavaScript, and Node-RED to connect to previously developed

experiments and research tools and expanding the utility of the ARLVF.

The ARLVF will continue to grow as developers and researchers encounter

additional opportunities and use cases. The following are potential features for

future implementation.

 Command and control of application modules. Currently, data

consumers initiate data requests. There will be cases in the future where

such requests would come from a different application. Additional

message types and handlers will be required to support this feature.

Approved for public release; distribution is unlimited.

14

 Status and Statistics reporting. Create a uniform mechanism to collect

and report metrics of each application module.

 Additional language support. The VFAdapter and the rest of the

ARLVF API are written in Python. It may be desirable to expand to

other programming languages such as Java.

Approved for public release; distribution is unlimited.

15

7. References

1. Dron W, Keaton M, Hancock, J, Aguirre, M, Toth AJ. US Army Research

Laboratory visualization framework design document. Adelphi Laboratory

Center (MD): Army Research Laboratory (US): 2016 Jan. Report No.: ARL-

TR-7561.

2. US Army Research Laboratory. The Network Science Research Laboratory.

Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2014 Sep

14 [accessed 2017]. http://www.arl.army.mil/nsrl.

Approved for public release; distribution is unlimited.

16

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

ARLVF US Army Research Laboratory Visualization Framework

API application programming interface

ID identifier

IP Internet Protocol

JSON JavaScript Object Notation

UUID universally unique identifier

Approved for public release; distribution is unlimited.

17

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 2 DIR ARL

 (PDF) IMAL HRA

 RECORDS MGMT

 RDRL DCL

 TECH LIB

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 2 ARL

 (PDF) RDRL CIN T

 C HSIEH

 A TOTH

Approved for public release; distribution is unlimited.

18

INTENTIONALLY LEFT BLANK.

